Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The vertical structure of ocean eddies is generally surface-intensified, commonly attributed to the dominant baroclinic modes arising from the boundary conditions (BCs). Conventional BC considerations mostly focus on either flat- or rough-bottom conditions. The impact of surface buoyancy anomalies—often represented by surface potential vorticity (PV) anomalies—has not been fully explored. Here, we study the role of the surface PV in setting the vertical distribution of eddy kinetic energy (EKE) in an idealized adiabatic ocean model driven by wind stress. The simulated EKE profile in the extratropical ocean tends to peak at the surface and have ane-folding depth typically smaller than half of the ocean depth. This vertical structure can be reasonably represented by a single surface quasigeostrophic (SQG) mode at the energy-containing scale resulting from the large-scale PV structure. Due to isopycnal outcropping and interior PV homogenization, the surface meridional PV gradient is substantially stronger than the interior PV gradient, yielding surface-trapped baroclinically unstable modes with horizontal scales comparable to or smaller than the deformation radius. These surface-trapped eddies then grow in size both horizontally and vertically through an inverse energy cascade up to the energy-containing scale, which dominates the vertical distribution of EKE. As for smaller horizontal scales, the EKE distribution decays faster with depth. Guided by this interpretation, an SQG-based scale-aware parameterization of the EKE profile is proposed. Preliminary offline diagnosis of a high-resolution simulation shows the proposed scheme successfully reproducing the dependence of the vertical structure of EKE on the horizontal grid resolution.more » « less
-
Abstract Isopycnal mixing of tracers is important for ocean dynamics and biogeochemistry. Previous studies have primarily focused on the horizontal structure of mixing, but what controls its vertical structure is still unclear. This study investigates the vertical structure of the isopycnal tracer diffusivity diagnosed by a multiple‐tracer inversion method in an idealized basin circulation model. The first two eigenvalues of the symmetric part of the 3D diffusivity tensor are approximately tangent to isopycnal surfaces. The isopycnal mixing is anisotropic, with principal directions of the large and small diffusivities generally oriented along and across the mean flow direction. The cross‐stream diffusivity can be reconstructed from the along‐stream diffusivity after accounting for suppression of mixing by the mean flow. In the circumpolar channel and the upper ocean in the gyres, the vertical structure of the along‐stream diffusivity follows that of the rms eddy velocity times a depth‐independent local energy‐containing scale estimated from the sea surface height. The diffusivity in the deep ocean in the gyres instead follows the profile of the eddy kinetic energy times a depth‐independent mixing time scale. The transition between the two mixing regimes is attributed to the dominance of nonlinear interactions and linear waves in the upper and deep ocean, respectively, distinguished by a nonlinearity parameter. A formula is proposed that accounts for both regimes and captures the vertical variation of diffusivities better than extant theories. These results inform efforts to parameterize the vertical structure of isopycnal mixing in coarse‐resolution ocean models.more » « less
-
Abstract Downstream of Cape Hatteras, the Gulf Stream (GS) is bounded to the north by a sharp temperature front known as the North Wall (NW). Previous studies have generally assumed that variations of the NW and GS are equivalent. Using satellite sea surface height to identify the GS and the 15 °C isotherm at 200‐m depth to represent the NW, this paper examines their similarities and differences during 1993–2016. The NW and GS are geographically close and vary similarly only to the west of 71°W. Downstream of that, they rapidly diverge—and the variances of their latitudes increase by more than a factor of 2—as the GS flows past the New England Seamounts. Evidence is presented to show that the difference in properties of the NW and the GS is related to the presence of mesoscale eddies in the region separating them.more » « less
An official website of the United States government
